Adaptive Control of Hybrid PSO-APGA using Neural Network for Constrained Real-Parameter Optimization

نویسندگان

  • Hieu Pham
  • Tam Bui
  • Hiroshi Hasegawa
چکیده

This paper describes an evolutionary strategy called PSOGA-NN, which uses Neural Network (NN) for selfadaptive control of hybrid Particle Swarm Optimization and Adaptive Plan system with Genetic Algorithm (PSO-APGA) to solve large scale problems and constrained real-parameter optimization. This approach combines the search ability of all optimization techniques (PSO, GA) for stability of convergence to the optimal solution and incorporates concept from neural network for self-adaptive of control parameters. It is shown to be statistically significantly superior to other Evolutionary Algorithms (EAs) on numerical benchmark problems and constrained real-parameter optimization. Keywords—Adaptive Plan, Neural Network, Parallel Genetic Algorithm, Particle Swarm Optimization, Real-parameter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

متن کامل

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

متن کامل

A Neural Network-PSO Based Control for Brushless DC Motors for Minimizing Commutation Torque Ripple

This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of voltage and commutation time is estimated by a neural network and optimized with an optimization method named particle swarm optimization (PSO) algorithm analysis. The goal of optimizati...

متن کامل

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014